

Skip to main content

Search This Blog

Michael James - Developer

An Application Developers View on Grasping New Technologies

Using the Razor Engine to create PDFs

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

May 08, 2011

I've been using MVC 3 and the Razor syntax for a while now, and a while ago whilst reading how people were using Razor for their email templates I had the idea to use Razor to help create PDF templates.

Now sadly it's been a while since I played around with this but I have only just started getting back on top of things so here's how I've done it.

Components Used

My solution is to write HTML templates using the Razor syntax and then to make use of the Razor View Engine for filling in the dynamic data. Then for the PDF creation to make use of iTextSharp library to generating the PDF documents from the generated HTML.
 iTextSharp is a free library that allows you to create PDF's using C#, unfortunatley its API is a bit of a pain to use natively so I have made use of Hugo Bonacci's HtmlToPdfBuilder.cs class to simply my interaction with the library.

The first thing to do is to generate the HTML markup for out PDF. So fire up a new RazorViewEngine and load the view (template) you wish to use. We load the view by using the view engines FindView method. This method requires a ControllerContext so if you are using in an MVC site you can pass the current context, which is how for my protoype I used it, or you need to pass a custom one.

 var frontPageData = new RazorViewEngine().FindView(this.ControllerContext, "Newsletter", "", false);

In my example I wanted my Newsletter template, I have decided to not use a master view or caching but in a real application you may want to enable view caching.

Next you need a view context, a view context also needs a controller context, the view you found previously, a viewdatadictionary, a tempdatadictionary and a textwriter. The viewdatadictionary should be used to pass a model to your view or viewdata items, these will then be used within the view to populated your dynamic data items. The textwriter will be the object that the final generated HTML will be written to and this is what we will use to generate the PDF from.

 var textwriter = new StringWriter();
 var dataDict = new ViewDataDictionary<NewsletterData>()
 {
 Model = new NewsletterData{ Name = "Mike" }
 };
 var context = new ViewContext(this.ControllerContext, frontPageData.View, dataDict, new TempDataDictionary(), textwriter);

The final thing we do to get our generated HTML is call the Render method on our view, this render method requires our viewcontext and the text writer.

frontPageData.View.Render(context, textwriter);

Now the HTML is generated we can make use of the HtmlToPdfBuilder class to take our HTML and generate a PDF document. This is as simple as creating a new builder with a provided pagesize, calling add page and then appending our HTML. Hugo's HtmlToPdfBuilder class expects an array of values to use in the HTML, as it expects the HTML to have placeholders in the String.Format fashion {0} {1} etc. We don't need to do this as we have already finalised our HTML, if this was going to be production code I would seriously consider not using the HtmlToPdfBuilder class and instead write one that only uses iTextSharp and the RazorViewEngine, however for this simple prototype it makes things alot simpler.

var myHtmlPdfBuilder = new HtmlToPdfBuilder(PageSize.A4_LANDSCAPE);
//add a new page
myHtmlPdfBuilder.AddPage();
//using the current page take our html data from our view and write it
myHtmlPdfBuilder[0].AppendHtml(data, new object[]{ });

Now the PDF has been generated we can call the RenderPDF method on our HtmlPdfBuilder class to get an array of bytes back that represent the PDF. We can then use this array and write it to disk as a PDF document or to a response stream to have a dynamic PDF page on a website.

It really is that simple, I hope this prototype shows you the power the RazorViewEngine gives you especially when you start combining its output with other third party libraries. You can download my protoype MVC 3 site with this in and have a poke. It includes a simple PDFActionResult along with the above code.

Update

 Whilst writing this blog post up I have decided to roll this prototype into a proper component which should simplfy the above and not require the use of Hugo's class. I will blog about this component when it is finished and publish it on CodePlex or something similar.

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

Comments

	
John G8 February 2012 at 02:21
Did you ever create that proper component you mentioned above? Thanks!
ReplyDelete
Replies

Reply

	
Jason Q29 June 2012 at 15:37
Did you ever get to that component you mentioned? I'd love to get it via Nuget!
ReplyDelete
Replies

Reply

Add comment

Load more...

Post a Comment

Popular posts from this blog

Can you use BuildRoot with Windows Subsystem for Linux......

June 14, 2019

 A quick note I started this blog post back in August of 2018 and never completed it. Essentially I wrote most of it and then found I just couldn't run BuildRoot properly, I came back to it every Windows 10 release due to performance improvements etc however its only now with WSL2 that this is possible. Read on to find out the full story :) Original Post I love Windows Subsystem for Linux , I mention it all the time in work, done "brown bag" sessions on it, even did a lightning talk on it at DDDSW 18 . This week I've been working with a contractor to produce essentially an Embedded OS for a project. Previously I've always used existing distributions and made them "lite" or used preconfigured ones, Raspbian Lite for example however he promptly told me I'm doing it wrong and that I shoudl be using BuildRoot. Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems through cross-compilation. Sound's interest

Read more

DotNet CLI , private NuGet feeds and Linux...

June 27, 2019

Today I hit an issue whilst trying to run dotnet run for some of our benchmarkdotnet tests which I like to run all new hardware I try out. My pair of Raspberry PI 4's arrived and I wanted to compare the performance of our Fingerprint capture code. I've hit the issue before and last time I figured it out I swore I'd blog and write it up as I knew I would forget! My benchmark project is a straight forward BenchmarkDotNet project however it consumers NuGet packages from both nuget.org as well as our private NuGet repository which requires authentication. For all of our windows machines this works without an issue for machines on the domain they authenticate seemlessly however when using Linux devices this is a different issue :(Instead on Linux devices we always get: /home/pi/dotnet/sdk/2.2.300/NuGet.targets(121,5): error : GSSAPI operation failed with error - An invalid status code was supplied (SPNEGO cannot find mechanisms to negotiate). This essentially means it

Read more

WebUSB - An unexpected update...

March 10, 2018

In January at my new(ish) user group Momentum Meetups , I presented on "Reaching out beyond the Chrome" (although suffering from food poisoning so I was definitely going green at points!). It included WebUSB and WebBluetooth . I was excited by how powerful it was and even had a colleague present something we had been prototyping in out work place. During the talk I mentioned security and how it had been designed so it only works on https and there's a permission model where you have to approve the device before it can be used. Unfortunately this week it came to light that Authentication devices could be bypassed via USB. These devices are a great way of proving you are who you say you are on the web beyond basic 2FA text's or applications. So being able to be able to bypass them via WebUSB is a big deal :(My Original Security Slide A few days later Google then disabled WebUSB by default effectively killing it off until such a time where its made secure

Read more

Powered by Blogger

Theme images by Radius Images

	

Michael James

Visit profile

Archive

	

2020
3

	

November
1

	

October
1

	

June
1

	

2019
7

	

July
1

	

June
2

	

May
2

	

April
2

	

2018
10

	

November
2

	

May
2

	

April
1

	

March
3

	

February
1

	

January
1

	

2017
6

	

August
3

	

July
3

	

2016
2

	

November
1

	

February
1

	

2015
2

	

August
2

	

2014
4

	

June
1

	

May
3

	

2012
13

	

October
2

	

June
1

	

May
1

	

April
1

	

March
3

	

February
2

	

January
3

	

2011
7

	

December
1

	

August
1

	

July
1

	

May
1

	
Using the Razor Engine to create PDFs

	

January
3

	

2010
5

	

December
1

	

April
2

	

February
1

	

January
1

	

2009
14

	

October
1

	

August
1

	

June
1

	

May
1

	

April
3

	

March
4

	

February
1

	

January
2

Show more
Show less

Subscribe

Posts

 Atom

Posts

Comments

 Atom

Comments

Labels

	.NET
	.Net Core
	.Net Core 2.0
	.Net Standard 2.0
	Access
	ado.net
	Alexa
	Amazon
	ASP.NET
	ASP.Net Core

	ASP.NET MVC
	AWS
	Azure
	Bandwidth
	Battery
	Book Review
	Books
	bugs
	Build Agen
	Build Error
	BuildServer
	C#
	chrome
	CodeFirst
	CodePlex
	Console Apps
	Content-Disposition
	csproj
	Data
	Data Migration
	Data Type
	DataTypes
	Deployment
	DotRAS
	drivers
	Edge
	EntityFramework
	Excel
	Fakes
	FCKEditor
	Firefox
	flickr
	getUserMedia
	Google
	google chrome
	Google SiteMap Generator
	Hack Day
	Hardware Interupts
	HTML5
	HTMLHelper
	HTTP Headers
	IIS
	IISExpress
	Image Resizing
	Import Export
	internet explorer
	Interupts
	javascript
	JetBrains
	JustTrace
	Lambda Functions
	Lamda Expressions
	lessons learnt
	LINQ
	LinqPad
	LuceneToLinq
	masterclass
	Microsoft Band
	Momentum Meetups
	monotouch
	msbuild
	Multi Threading
	MVC
	nuget
	objective-c
	openhackdaylondon
	Packt
	Plugin
	PortableClassLibrary
	Profiling
	project.json
	Publish
	RaspberryPi
	reflection
	Rider
	roslyn
	Safari
	Script
	Security
	Shims
	Silverlight
	SiteMaps
	SQL
	streams
	SubVersion
	SVN
	TDD
	Telerik
	TFS
	Thoughts
	Threading
	Tips and Tricks
	Ubuntu
	UIButton
	unblock
	Universal Windows Apps
	User Testing
	UWP
	VBScript
	vimeo
	vista
	Visual Studio
	Visual Studio 2010
	vs11
	VS2008
	vs2010
	VS2012
	VSCode
	webapi
	WebUSB
	WIndows 7
	Windows Azure
	Windows Phone
	Windows Subsystem for Linux
	WSL
	WSL2
	Xamarin
	Xamarin.Forms
	Xamarin.ios
	XML
	Yahoo
	youtube

Show more
Show less

Recent Popular Posts

Can you use BuildRoot with Windows Subsystem for Linux......

June 14, 2019

 A quick note I started this blog post back in August of 2018 and never completed it. Essentially I wrote most of it and then found I just couldn't run BuildRoot properly, I came back to it every Windows 10 release due to performance improvements etc however its only now with WSL2 that this is possible. Read on to find out the full story :) Original Post I love Windows Subsystem for Linux , I mention it all the time in work, done "brown bag" sessions on it, even did a lightning talk on it at DDDSW 18 . This week I've been working with a contractor to produce essentially an Embedded OS for a project. Previously I've always used existing distributions and made them "lite" or used preconfigured ones, Raspbian Lite for example however he promptly told me I'm doing it wrong and that I shoudl be using BuildRoot. Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems through cross-compilation. Sound's interest

Read more

DotNet CLI , private NuGet feeds and Linux...

June 27, 2019

Today I hit an issue whilst trying to run dotnet run for some of our benchmarkdotnet tests which I like to run all new hardware I try out. My pair of Raspberry PI 4's arrived and I wanted to compare the performance of our Fingerprint capture code. I've hit the issue before and last time I figured it out I swore I'd blog and write it up as I knew I would forget! My benchmark project is a straight forward BenchmarkDotNet project however it consumers NuGet packages from both nuget.org as well as our private NuGet repository which requires authentication. For all of our windows machines this works without an issue for machines on the domain they authenticate seemlessly however when using Linux devices this is a different issue :(Instead on Linux devices we always get: /home/pi/dotnet/sdk/2.2.300/NuGet.targets(121,5): error : GSSAPI operation failed with error - An invalid status code was supplied (SPNEGO cannot find mechanisms to negotiate). This essentially means it

Read more

WebUSB - An unexpected update...

March 10, 2018

In January at my new(ish) user group Momentum Meetups , I presented on "Reaching out beyond the Chrome" (although suffering from food poisoning so I was definitely going green at points!). It included WebUSB and WebBluetooth . I was excited by how powerful it was and even had a colleague present something we had been prototyping in out work place. During the talk I mentioned security and how it had been designed so it only works on https and there's a permission model where you have to approve the device before it can be used. Unfortunately this week it came to light that Authentication devices could be bypassed via USB. These devices are a great way of proving you are who you say you are on the web beyond basic 2FA text's or applications. So being able to be able to bypass them via WebUSB is a big deal :(My Original Security Slide A few days later Google then disabled WebUSB by default effectively killing it off until such a time where its made secure

Read more

